Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Oecologia ; 204(4): 775-788, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554159

RESUMO

Habitat selection theory suggests that environmental features selected at coarse scales reveal fundamental factors affecting animal fitness. When these factors vary across seasons, they may lead to large-scale movements, including long-distance seasonal migrations. We analyzed the seasonal habitat selection of 25 satellite-tracked Arctic hares from a population on Ellesmere Island (Nunavut, Canada) that relocated over 100 km in the fall. Since no other lagomorph is known to perform such extensive movements, this population offered an ideal setting to test animal movement and habitat selection theory. On summer grounds hares selected low elevation areas, while on winter grounds they selected high vegetation biomass, high elevation, and steep slopes. During fall relocation, they alternated between stopover and traveling behavioral states (ratio 2:1). Stopover locations were characterized by higher vegetation heterogeneity and lower rugosity than traveling locations, while vegetation biomass and elevation interacted to explain stopover locations in a more complex way. The selected combination of environmental features thus varied across seasons and behavioral states, in a way broadly consistent with predictions based on the changing food and safety needs of hares. Although causality was not demonstrated, our results improve our understanding of long-distance movements and habitat selection in Arctic hares, as well as herbivore ecology in the polar desert. Results also provide strong support to animal movement and habitat selection theory, by showing how some important hypotheses hold when tested in a species phylogenetically distinct from most animal models used in this research field.


Assuntos
Biomassa , Ecossistema , Lebres , Estações do Ano , Animais , Regiões Árticas , Migração Animal
2.
J Anim Ecol ; 92(12): 2373-2385, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37814584

RESUMO

Indirect interactions are widespread among prey species that share a common predator, but the underlying mechanisms driving these interactions are often unclear, and our ability to predict their outcome is limited. Changes in behavioural traits that impact predator space use could be a key proximal mechanism mediating indirect interactions, but there is little empirical evidence of the causes and consequences of such behavioural-numerical response in multispecies systems. Here, we investigate the complex ecological relationships between seven prey species sharing a common predator. We used a path analysis approach on a comprehensive 9-year data set simultaneously tracking predator space use, prey densities and prey mortality rate on key species of a simplified Arctic food web. We show that high availability of a clumped and spatially predictable prey (goose eggs) leads to a twofold reduction in predator (arctic fox) home range size, which increases local predator density and strongly decreases nest survival of an incidental prey (American golden plover). On the contrary, a scattered cyclic prey with potentially lower spatial predictability (lemming) had a weaker effect on fox space use and an overall positive impact on the survival of incidental prey. These contrasting effects underline the importance of studying behavioural responses of predators in multiprey systems and to explicitly integrate behavioural-numerical responses in multispecies predator-prey models.


Assuntos
Comportamento de Retorno ao Território Vital , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Cadeia Alimentar , Gansos/fisiologia , Raposas/fisiologia
3.
Proc Biol Sci ; 290(2004): 20231154, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37554032

RESUMO

The strength of indirect biotic interactions is difficult to quantify in the wild and can alter community composition. To investigate whether the presence of a prey species affects the population growth rate of another prey species, we quantified predator-mediated interaction strength using a multi-prey mechanistic model of predation and a population matrix model. Models were parametrized using behavioural, demographic and experimental data from a vertebrate community that includes the arctic fox (Vulpes lagopus), a predator feeding on lemmings and eggs of various species such as sandpipers and geese. We show that the positive effects of the goose colony on sandpiper nesting success (due to reduction of search time for sandpiper nests) were outweighed by the negative effect of an increase in fox density. The fox numerical response was driven by changes in home range size. As a result, the net interaction from the presence of geese was negative and could lead to local exclusion of sandpipers. Our study provides a rare empirically based model that integrates mechanistic multi-species functional responses and behavioural processes underlying the predator numerical response. This is an important step forward in our ability to quantify the consequences of predation for community structure and dynamics.


Assuntos
Charadriiformes , Comportamento de Retorno ao Território Vital , Animais , Raposas/fisiologia , Dinâmica Populacional , Gansos/fisiologia , Crescimento Demográfico , Comportamento Predatório/fisiologia , Arvicolinae/fisiologia , Cadeia Alimentar
4.
J Comp Physiol B ; 193(5): 557-568, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37382694

RESUMO

Several species of passerines leave their nest with unfinished feather growth, resulting in lower feather insulation and increased thermoregulatory demands compared to adults. However, feather insulation is essential for avian species breeding at northern latitudes, where cold conditions or even snowstorms can occur during the breeding season. In altricial arctic species, increased heat loss caused by poor feather insulation during growth could be counter-adaptative as it creates additional energy demands for thermoregulation. Using flow-through respirometry, we compared resting metabolic rate at thermoneutrality (RMRt), summit metabolic rate (Msum) and heat loss (conductance) in adult and juvenile snow buntings on their summer and winter grounds. In summer, when buntings are in the Arctic, juveniles had a 12% higher RMRt, likely due to unfinished growth, and lost 14% more heat to the environment than adults. This pattern may result from juveniles fledging early to avoid predation at the cost of lower feather insulation. Surprisingly, an opposite pattern was observed at lower latitudes on their wintering grounds. Although they showed no difference in RMRt and Msum, adults were losing 12% more heat than juveniles. We suggest that this difference is due to poorer insulative property of plumage in adults stemming from energetic and time constraints encountered during their post-breeding molt. High plumage insulation in first-winter juvenile buntings could be adaptive to reduce thermoregulatory demands and maximize survival in the first winter of life, while adults could use behavioral strategies to compensate for their greater rate of heat loss.

5.
R Soc Open Sci ; 10(2): 220729, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36756054

RESUMO

Long-distance dispersal plays a key role in species distribution and persistence. However, its movement metrics and ecological implications may differ whether it is undertaken by juveniles (natal dispersal) or adults (breeding dispersal). We investigated the influence of life stage on long-distance dispersal in the Arctic fox, an important tundra predator. We fitted 170 individuals with satellite collars during a 13-year study on Bylot Island (Nunavut, Canada), and analysed the tracks of 10 juveniles and 27 adults engaging in long-distance dispersal across the Canadian High Arctic. This behaviour was much more common than expected, especially in juveniles (62.5%, adults: 19.4%). Emigration of juveniles occurred mainly at the end of summer while departure of adults was not synchronized. Juveniles travelled for longer periods and over longer cumulative distances than adults, but spent similar proportions of their time travelling on sea ice versus land. Successful immigration occurred mostly in late spring and was similar for juveniles and adults (30% versus 37%). Our results reveal how life stage influences key aspects of long-distance dispersal in a highly mobile canid. This new knowledge is critical to understand the circumpolar genetic structure of the species, and how Arctic foxes can spread zoonoses across vast geographical areas.

6.
Proc Biol Sci ; 289(1981): 20220300, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36000233

RESUMO

Rising global temperatures are expected to increase reproductive costs for wildlife as greater thermoregulatory demands interfere with reproductive activities. However, predicting the temperatures at which reproductive performance is negatively impacted remains a significant hurdle. Using a thermoregulatory polygon approach, we derived a reproductive threshold temperature for an Arctic songbird-the snow bunting (Plectrophenax nivalis). We defined this threshold as the temperature at which individuals must reduce activity to suboptimal levels (i.e. less than four-time basal metabolic rate) to sustain nestling provisioning and avoid overheating. We then compared this threshold to operative temperatures recorded at high (82° N) and low (64° N) Arctic sites to estimate how heat constraints translate into site-specific impacts on sustained activity level. We predict buntings would become behaviourally constrained at operative temperatures above 11.7°C, whereupon they must reduce provisioning rates to avoid overheating. Low-Arctic sites had larger fluctuations in solar radiation, consistently producing daily periods when operative temperatures exceeded 11.7°C. However, high-latitude birds faced entire, consecutive days when parents would be unable to sustain required provisioning rates. These data indicate that Arctic warming is probably already disrupting the breeding performance of cold-specialist birds and suggests counterintuitive and severe negative impacts of warming at higher latitude breeding locations.


Assuntos
Aves Canoras , Animais , Regiões Árticas , Resposta ao Choque Térmico , Reprodução , Temperatura
7.
Ecology ; 103(8): e3734, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35466413

RESUMO

Prey handling processes are considered a dominant mechanism leading to short-term positive indirect effects between prey that share a predator. However, a growing body of research indicates that predators are not necessarily limited by such processes in the wild. Density-dependent changes in predator foraging behavior can also generate positive indirect effects but they are rarely included as explicit functions of prey densities in functional response models. With the aim of untangling proximate mechanisms of species interactions in natural communities and improving our ability to quantify interaction strength, we extended the multi-prey version of the Holling disk equation by including density-dependent changes in predator foraging behavior. Our model, based on species traits and behavior, was inspired by the vertebrate community of the arctic tundra, where the main predator (the arctic fox) is an active forager feeding primarily on cyclic small rodent (lemming) and eggs of various tundra-nesting bird species. Short-term positive indirect effects of lemmings on birds have been documented over the circumpolar Arctic but the underlying mechanisms remain poorly understood. We used a unique data set, containing high-frequency GPS tracking, accelerometer, behavioral, and experimental data to parameterize the multi-prey model, and a 15-year time series of prey densities and bird nesting success to evaluate interaction strength between species. We found that (1) prey handling processes play a minor role in our system and (2) changes in arctic fox daily activity budget and distance traveled can partly explain the predation release on birds observed during lemming peaks. These adjustments in predator foraging behavior with respect to the main prey density thus appear as the dominant mechanism leading to positive indirect effects commonly reported among arctic tundra prey. Density-dependent changes in functional response components have been little studied in natural vertebrate communities and deserve more attention to improve our ability to quantify the strength of species interactions.


Assuntos
Comportamento Predatório , Tundra , Animais , Regiões Árticas , Arvicolinae/fisiologia , Aves/fisiologia , Raposas/fisiologia , Dinâmica Populacional
8.
Sci Rep ; 12(1): 5003, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322061

RESUMO

Animal migration contributes largely to the seasonal dynamics of High Arctic ecosystems, linking distant habitats and impacting ecosystem structure and function. In polar deserts, Arctic hares are abundant herbivores and important components of food webs. Their annual migrations have long been suspected, but never confirmed. We tracked 25 individuals with Argos satellite telemetry to investigate the existence of migration in a population living at Alert (Ellesmere Island, Nunavut, Canada). During fall, 21 hares undertook directional, long-distance movements in a southwestern direction towards Lake Hazen. Daily movement rates averaged 1.3 ± 0.5 km, 4.3 ± 1.6 km, and 1.7 ± 0.9 km before, during, and after relocation, respectively. Straight-line and minimum cumulative distances traveled averaged 98 ± 18 km (range: 72-148 km) and 198 ± 62 km (range: 113-388 km), respectively. This is the first report of large-scale seasonal movements in Arctic hares and, surprisingly, in any lagomorph species. These movements may be part of an annual migratory pattern. Our results redefine our understanding of the spatial ecology of Arctic hares, demonstrate unsuspected mobility capacities in lagomorphs, and open new perspectives regarding the ecological dynamics of the northern polar deserts.


Assuntos
Lebres , Lagomorpha , Migração Animal , Animais , Regiões Árticas , Canadá , Ecossistema , Estações do Ano
10.
Mov Ecol ; 9(1): 58, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838144

RESUMO

BACKGROUND: Biologging now allows detailed recording of animal movement, thus informing behavioural ecology in ways unthinkable just a few years ago. In particular, combining GPS and accelerometry allows spatially explicit tracking of various behaviours, including predation events in large terrestrial mammalian predators. Specifically, identification of location clusters resulting from prey handling allows efficient location of killing events. For small predators with short prey handling times, however, identifying predation events through technology remains unresolved. We propose that a promising avenue emerges when specific foraging behaviours generate diagnostic acceleration patterns. One such example is the caching behaviour of the arctic fox (Vulpes lagopus), an active hunting predator strongly relying on food storage when living in proximity to bird colonies. METHODS: We equipped 16 Arctic foxes from Bylot Island (Nunavut, Canada) with GPS and accelerometers, yielding 23 fox-summers of movement data. Accelerometers recorded tri-axial acceleration at 50 Hz while we obtained a sample of simultaneous video recordings of fox behaviour. Multiple supervised machine learning algorithms were tested to classify accelerometry data into 4 behaviours: motionless, running, walking and digging, the latter being associated with food caching. Finally, we assessed the spatio-temporal concordance of fox digging and greater snow goose (Anser caerulescens antlanticus) nesting, to test the ecological relevance of our behavioural classification in a well-known study system dominated by top-down trophic interactions. RESULTS: The random forest model yielded the best behavioural classification, with accuracies for each behaviour over 96%. Overall, arctic foxes spent 49% of the time motionless, 34% running, 9% walking, and 8% digging. The probability of digging increased with goose nest density and this result held during both goose egg incubation and brooding periods. CONCLUSIONS: Accelerometry combined with GPS allowed us to track across space and time a critical foraging behaviour from a small active hunting predator, informing on spatio-temporal distribution of predation risk in an Arctic vertebrate community. Our study opens new possibilities for assessing the foraging behaviour of terrestrial predators, a key step to disentangle the subtle mechanisms structuring many predator-prey interactions and trophic networks.

11.
Ecol Evol ; 11(6): 2503-2514, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767817

RESUMO

An animal's movement rate is a central metric of movement ecology as it correlates with its energy acquisition and expenditure. Obtaining accurate estimates of movement rate is challenging, especially in small highly mobile species where GPS battery size limits fix frequency, and geolocation technology limits positions' precision. In this study, we used high GPS fix frequencies to evaluate movement rates in eight territorial arctic foxes on Bylot Island (Nunavut, Canada) in July-August 2018. We also assessed the effects of fix interval and location error on estimated movement rates. We obtained 96 fox-days of data with a fix interval of 4 min and 12 fox-days with an interval of 30 s. We subsampled the latter dataset to simulate six longer fix intervals ranging from 1 to 60 min and estimated daily distances traveled by adding linear distances between successive locations. When estimated with a fix interval of 4 min, daily distances traveled by arctic foxes averaged 51.9 ± 11.7 km and reached 76.5 km. GPS location error averaged 11 m. Daily distances estimated at fix intervals longer than 4 min were greatly underestimated as fix intervals increased, because of linear estimation of tortuous movements. Conversely, daily distances estimated at fix intervals as small as 30 s were likely overestimated due to location error. To our knowledge, no other territorial terrestrial carnivore was shown to routinely travel daily distances as large as those observed here for arctic foxes. Our results generate new hypotheses and research directions regarding the foraging ecology of highly mobile predators. Furthermore, our empirical assessment of the effects of fix interval and location error on estimated movement rates can guide the design and interpretation of future studies on the movement ecology of small opportunistic foragers.

12.
Mov Ecol ; 9(1): 12, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743833

RESUMO

BACKGROUND: Movements and habitat selection of predators shape ecological communities by determining the spatiotemporal distribution of predation risk. Although intraspecific interactions associated to territoriality and parental care are involved in predator habitat selection, few studies have addressed their effects simultaneously with those of prey and habitat distribution. Moreover, individuals require behavioural and temporal flexibility in their movement decisions to meet various motivations in a heterogeneous environment. To untangle the relative importance of ecological determinants of predator fine-scale habitat selection, we studied simultaneously several spatial, temporal, and behavioural predictors of habitat selection in territorial arctic foxes (Vulpes lagopus) living within a Greater snow goose (Anser caerulescens atlantica) colony during the reproductive season. METHODS: Using GPS locations collected at 4-min intervals and behavioural state classification (active and resting), we quantified how foxes modulate state-specific habitat selection in response to territory edges, den proximity, prey distribution, and habitats. We also assessed whether foxes varied their habitat selection in response to an important phenological transition marked by decreasing prey availability (goose egg hatching) and decreasing den dependency (emancipation of cubs). RESULTS: Multiple factors simultaneously played a key role in driving habitat selection, and their relative strength differed with respect to the behavioural state and study period. Foxes avoided territory edges, and reproductive individuals selected den proximity before the phenological transition. Higher goose nest density was selected when foxes were active but avoided when resting, and was less selected after egg hatching. Selection for tundra habitats also varied through the summer, but effects were not consistent. CONCLUSIONS: We conclude that constraints imposed by intraspecific interactions can play, relative to prey distribution and habitat characteristics, an important role in the habitat selection of a keystone predator. Our results highlight the benefits of considering behavioural state and seasonal phenology when assessing the flexibility of predator habitat selection. Our findings indicate that considering intraspecific interactions is essential to understand predator space use, and suggest that using predator habitat selection to advance community ecology requires an explicit assessment of the social context in which movements occur.

13.
Ecol Evol ; 11(4): 1609-1619, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613993

RESUMO

Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (T a) is unknown.Using flow-through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing T a and measured body temperature (T b), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production).Buntings had an average (±SD) T b of 41.3 ± 0.2°C at thermoneutral T a and increased T b to a maximum of 43.5 ± 0.3°C. Buntings started panting at T a of 33.2 ± 1.7°C, with rapid increases in EWL starting at T a = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral T a, a markedly lower increase than seen in more heat-tolerant arid-zone species (e.g., ≥4.7× baseline rates). Heat-stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production.Our results suggest that buntings' well-developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.

14.
Science ; 370(6517): 712-715, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33154141

RESUMO

The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature.


Assuntos
Migração Animal , Monitorização de Parâmetros Ecológicos , Aclimatação , Animais , Arquivos , Regiões Árticas , População
15.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190354, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862818

RESUMO

Models incorporating seasonality are necessary to fully assess the impact of global warming on Arctic communities. Seasonal migrations are a key component of Arctic food webs that still elude current theories predicting a single community equilibrium. We develop a multi-season model of predator-prey dynamics using a hybrid dynamical systems framework applied to a simplified tundra food web (lemming-fox-goose-owl). Hybrid systems models can accommodate multiple equilibria, which is a basic requirement for modelling food webs whose topology changes with season. We demonstrate that our model can generate multi-annual cycling in lemming dynamics, solely from a combined effect of seasonality and state-dependent behaviour. We compare our multi-season model to a static model of the predator-prey community dynamics and study the interactions between species. Interestingly, including seasonality reveals indirect interactions between migrants and residents not captured by the static model. Further, we find that the direction and magnitude of interactions between two species are not necessarily accurate using only summer time-series. Our study demonstrates the need for the development of multi-season models and provides the tools to analyse them. Integrating seasonality in food web modelling is a vital step to improve predictions about the impacts of climate change on ecosystem functioning. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Migração Animal , Cadeia Alimentar , Modelos Biológicos , Tundra , Animais , Regiões Árticas , Arvicolinae , Biomassa , Raposas , Gansos , Aquecimento Global , Nunavut , Estações do Ano , Estrigiformes
16.
Oecologia ; 193(3): 557-569, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32596799

RESUMO

As top or mesopredators, carnivores play a key role in food webs. Their survival and reproduction are usually thought to be influenced by prey availability. However, simultaneous monitoring of prey and predators is difficult, making it challenging to evaluate the impacts of prey on carnivores' demography. Using 13 years of field data on arctic foxes Vulpes lagopus in the Canadian High Arctic and a capture-recapture multi-event statistical approach, we investigated the hypothesis that increases in lemming abundance (a cyclic and unpredictable food source) and goose colony proximity (a stable but spatially and temporally limited food source) would be associated with increased apparent survival and reproduction probabilities of adults. Adult apparent survival varied greatly across years (0.13-1.00) but was neither affected by lemming nor goose variations in abundance. However, reproduction probabilities were strongly influenced by both lemming abundance and access to the goose colony. A fox breeding in the best conditions of food availability (year of high lemming density inside the goose colony) had a reproduction probability four times higher than one experiencing the worst conditions (year of low lemming density outside the goose colony). Breeding status of individuals also played a role, with breeders having a 10-20% higher probability of survival and 30% higher probability of reproduction the following year than non-breeders. As the Arctic ecosystem changes due to increased temperatures and species ranges, this study will allow better predictions of predator responses to management or environmental changes and a better understanding of ecosystem functioning.


Assuntos
Ecossistema , Raposas , Animais , Regiões Árticas , Canadá , Cadeia Alimentar , Dinâmica Populacional
17.
J Anim Ecol ; 89(3): 704-715, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31538330

RESUMO

Climate change can impact ecosystems by reshaping the dynamics of resource exploitation for predators and their prey. Alterations of these pathways could be especially intense in ecosystems characterized by a simple trophic structure and rapid warming trends, such as in the Arctic. However, quantifying the multiple direct and indirect pathways through which climate change is likely to alter trophic interactions and their relative strength remains a challenge. Here, we aim to identify direct and indirect causal mechanisms driven by climate affecting predator-prey interactions of species sharing a tundra food web. We based our study on relationships between one Arctic predator (Arctic fox) and its two main prey - lemmings (preferred prey) and snow geese (alternate prey) - which are exposed to variable local and regional climatic factors across years. We used a combination of models mapping multiple causal links among key variables derived from a long-term dataset (21 years). We obtained several possible scenarios linking regional climate factors (Arctic oscillations) and local temperature and precipitation to the breeding of species. Our results suggest that both regional and local climate factors have direct and indirect impacts on the breeding of foxes and geese. Local climate showed a positive causal link with goose nesting success, while both regional and local climate displayed contrasted effects on the proportion of fox breeding. We found no impact of climate on lemming abundance. We observed positive relationships between lemming, fox and goose reproduction highlighting numerical and functional responses of fox to the variability of lemming abundance. Our study measures causal links and strength of interactions in a food web, quantifying both numerical response of a predator and apparent interactions between its two main prey. These results improve our understanding of the complex effects of climate on predator-prey interactions and our capacity to anticipate food web response to ongoing climate change.


Les changements climatiques peuvent avoir un impact sur les écosystèmes au travers des modifications de la dynamique d'exploitation des ressources par les prédateurs et leurs proies. Dans le cas de l'Arctique, caractérisée par un réseau trophique simple et une sensibilité marquée au réchauffement climatique, l'altération de ces relations trophiques pourrait être particulièrement importante. Cependant, la quantification des nombreux liens directs et indirects à travers lesquels les changements climatiques peuvent affecter les interactions trophiques demeure un défi. Notre objectif est d'identifier les mécanismes causaux directs et indirects, sous-tendus par le climat, affectant les interactions prédateur-proie au sein d'un réseau trophique au cœur de la toundra. Notre étude se base sur les relations entre un prédateur (renard arctique) et ses deux proies principales -le lemming (proie préférée) et la grande oie des neiges (proie alternative)- et qui subissent un accroissement des précipitations et des températures au travers des années. Nous avons utilisé une combinaison de modèles illustrant les liens causaux multiples entre les variables clés issues d'une base de données à long-terme (21 ans). Nous avons obtenu plusieurs scénarios possibles reliant les facteurs climatiques régionaux (Oscillation Arctique) et les températures et précipitations locales à la reproduction de nos 3 espèces. Nos résultats suggèrent que les facteurs climatiques régionaux et locaux présentent des impacts directs et indirects sur la reproduction du renard arctique et de l'oie des neiges. Le climat local présente un lien causal positif avec le succès de nidification de l'oie, alors que le climat local et régional démontrent un effet contrasté sur la proportion de renard en reproduction. Aucune relation entre les facteurs climatiques et l'abondance des lemmings n'a été trouvée. Nous avons observé des liens causaux positifs entre la reproduction du lemming, du renard et de l'oie, mettant en évidence les réponses numériques et fonctionnelles du renard arctique face à la variabilité de l'abondance de lemming. Notre étude est une des premières à mesurer les liens causaux et les forces d'interaction entre les espèces partageant un même réseau trophique, quantifiant ainsi la réponse numérique du prédateur et les interactions apparentes entre ses proies principales. Ces résultats améliorent notre compréhension des effets complexes du climat sur les interactions prédateur-proie et notre capacité à anticiper la réponse des réseaux trophiques aux changements climatiques en cours.


Assuntos
Ecossistema , Tundra , Animais , Regiões Árticas , Arvicolinae , Cadeia Alimentar , Dinâmica Populacional
18.
J Anim Ecol ; 89(2): 565-576, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31407338

RESUMO

The poleward range shift of the red fox (Vulpes vulpes) > 1,700 km into the Arctic is one of the most remarkable distribution changes of the early twentieth century. While this expansion threatens a smaller arctic ecological equivalent, the arctic fox (Vulpes lagopus), the case became a textbook example of climate-driven range shifts. We tested this classical climate change hypothesis linked to an important range shift which has attracted little research thus far. We analysed Canadian fur harvest data from the Hudson's Bay Company Archives (14 trading posts; 1926-1950), testing hypotheses based on changes in summer and winter climates. Summer warming might have triggered a bottom-up increase in ecosystem productivity, while winter warming might have lowered thermal stress, both favouring red fox expansion. Additionally, we evaluated the hypothesis that red fox expansion was driven by the appearance of human sedentary sites (n = 110) likely bringing food subsidies into the unproductive tundra. Analysis of red fox expansion chronologies showed that expansion speed was higher during warmer winters. However, the expansions occurred under both cooling and warming trends, being faster during cooler summers in the Baffin Island region. The increasing proportion of red fox in fox fur harvests was best explained by human activity, while generalized linear mixed models also revealed a marginal effect of warmer winters. Generalized additive models confirmed human presence as the most important factor explaining rates of change in the proportion of red fox in fox fur harvests. Using historical ecology, we disentangled the relative influences of climate change and anthropogenic habitat change, two global drivers that transformed arctic biodiversity during the last century and will likely continue to do so during this century. Anthropogenic food subsidies, which constitute stable food sources, facilitated the invasion of the tundra biome by a new mammalian predator and competitor, with long-term consequences that still remain to be understood.


Assuntos
Ecossistema , Raposas , Animais , Regiões Árticas , Biodiversidade , Canadá , Humanos
19.
Philos Trans R Soc Lond B Biol Sci ; 374(1788): 20190212, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31679495

RESUMO

Ancient DNA provides a powerful means to investigate the timing, rate and extent of population declines caused by extrinsic factors, such as past climate change and human activities. One species probably affected by both these factors is the arctic fox, which had a large distribution during the last glaciation that subsequently contracted at the start of the Holocene. More recently, the arctic fox population in Scandinavia went through a demographic bottleneck owing to human persecution. To investigate the consequences of these processes, we generated mitogenome sequences from a temporal dataset comprising Pleistocene, historical and modern arctic fox samples. We found no evidence that Pleistocene populations in mid-latitude Europe or Russia contributed to the present-day gene pool of the Scandinavian population, suggesting that postglacial climate warming led to local population extinctions. Furthermore, during the twentieth-century bottleneck in Scandinavia, at least half of the mitogenome haplotypes were lost, consistent with a 20-fold reduction in female effective population size. In conclusion, these results suggest that the arctic fox in mainland Western Europe has lost genetic diversity as a result of both past climate change and human persecution. Consequently, it might be particularly vulnerable to the future challenges posed by climate change. This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'


Assuntos
Distribuição Animal , Mudança Climática , Raposas/fisiologia , Variação Genética , Atividades Humanas , Animais , DNA Antigo/análise , Fósseis , Raposas/genética , Genoma Mitocondrial , Dinâmica Populacional , Países Escandinavos e Nórdicos
20.
Conserv Biol ; 33(4): 861-872, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30471146

RESUMO

For effective monitoring in social-ecological systems to meet needs for biodiversity, science, and humans, desired outcomes must be clearly defined and routes from direct to derived outcomes understood. The Arctic is undergoing rapid climatic, ecological, social, and economic changes and requires effective wildlife monitoring to meet diverse stakeholder needs. To identify stakeholder priorities concerning desired outcomes of arctic wildlife monitoring, we conducted in-depth interviews with 29 arctic scientists, policy and decision makers, and representatives of indigenous organizations and nongovernmental organizations. Using qualitative content analysis, we identified and defined desired outcomes and documented links between outcomes. Using network analysis, we investigated the structure of perceived links between desired outcomes. We identified 18 desired outcomes from monitoring and classified them as either driven by monitoring information, monitoring process, or a combination of both. Highly cited outcomes were make decisions, conserve, detect change, disseminate, and secure food. These reflect key foci of arctic monitoring. Infrequently cited outcomes (e.g., govern) were emerging themes. Three modules comprised our outcome network. The modularity highlighted the low strength of perceived links between outcomes that were primarily information driven or more derived (e.g., detect change, make decisions, conserve, or secure food) and outcomes that were primarily process driven or more derived (e.g., cooperate, learn, educate). The outcomes expand monitoring community and disseminate created connections between these modules. Key desired outcomes are widely applicable to social-ecological systems within and outside the Arctic, particularly those with wildlife subsistence economies. Attributes and motivations associated with outcomes can guide development of integrated monitoring goals for biodiversity conservation and human needs. Our results demonstrated the disconnect between information- and process-driven goals and how expansion of the monitoring community and improved integration of monitoring stakeholders will help connect information- and process-derived outcomes for effective ecosystem stewardship.


Identificación de las Necesidades Clave para la Integración de Resultados Socio-Ecológicos en el Monitoreo de Fauna en el Ártico Resumen Para que el monitoreo efectivo en los sistemas socio-ecológicos cumpla con las necesidades de la biodiversidad, la ciencia, y los humanos, se deben definir claramente los resultados deseados y se deben entender las rutas que se toman de los resultados directos hacia los resultados derivados. El Ártico está sufriendo rápidamente cambios climáticos, ecológicos, y económicos, y requiere de un monitoreo efectivo de fauna para cumplir con las necesidades de diversos accionistas. Realizamos entrevistas a profundidad con 29 científicos del Ártico, responsables de decisiones y políticas, y representativos de organizaciones indígenas y organizaciones no gubernamentales para identificar las prioridades de los accionistas con respecto a los resultados deseados del monitoreo de fauna ártica. Mediante un análisis cualitativo de contenido identificamos y definimos los resultados deseados y documentamos las conexiones entre los resultados. Con un análisis de redes investigamos la estructura de las conexiones percibidas y las clasificamos como causadas por el monitoreo de información, el monitoreo del proceso, o una combinación de ambos. Los resultados con un mayor número de menciones fueron tomar decisiones, conservar, detectar cambios, diseminar, y asegurar alimento. Estos reflejan los enfoques más importantes del monitoreo en el Ártico. Los resultados con poca frecuencia en las menciones (p. ej.: regular) correspondían a temas emergentes. Nuestra red de resultados estuvo compuesta por tres módulos. La modularidad resaltó la poca fuerza de las conexiones percibidas entre los resultados que fueron causados principalmente por la información o que estuvieron más derivados (p. ej.: detectar el cambio, tomar decisiones, conservar o asegurar alimento) y los resultados que fueron causados principalmente por el proceso o que estuvieron más derivados (p. ej.: cooperar, aprender, educar). Los resultados expanden la comunidad monitora y diseminan las conexiones creadas entre estos módulos. Los resultados clave deseados se pueden aplicar extensamente a los sistemas socio-ecológicos dentro y fuera del Ártico, particularmente aquellos con economías de sustento basadas en la fauna. Los atributos y motivaciones asociados con los resultados pueden guiar el desarrollo de los objetivos integrados de monitoreo para la conservación de la biodiversidad y las necesidades humanas. Nuestros resultados demostraron la desconexión entre los objetivos conducidos por la información y aquellos conducidos por el proceso y cómo la expansión de la comunidad monitora y una mejor integración de los accionistas monitores ayudarán a conectar los resultados derivados de la información y derivados del proceso para una administración efectiva del ecosistema.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Animais Selvagens , Regiões Árticas , Biodiversidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...